Predicting dementia development in Parkinson's disease using Bayesian network classifiers.
نویسندگان
چکیده
Parkinson's disease (PD) has broadly been associated with mild cognitive impairment (PDMCI) and dementia (PDD). Researchers have studied surrogate, neuroanatomic biomarkers provided by magnetic resonance imaging (MRI) that may help in the early diagnosis of this condition. In this article, four classification models (naïve Bayes, multivariate filter-based naïve Bayes, filter selective naïve Bayes and support vector machines, SVM) have been applied to evaluate their capacity to discriminate between cognitively intact patients with Parkinson's disease (PDCI), PDMCI and PDD. For this purpose, the MRI studies of 45 subjects (16 PDCI, 15 PDMCI and 14 PDD) were acquired and post-processed with Freesurfer, obtaining 112 variables (volumes of subcortical structures and thickness of cortical parcels) per subject. A multivariate filter-based naïve Bayes model was found to be the best classifier, having the highest cross-validated sensitivity, specificity and accuracy. Additionally, the most relevant variables related to dementia in PD, as predicted by our classifiers, were cerebral white matter, and volumes of the lateral ventricles and hippocampi.
منابع مشابه
Impact of Patients’ Gender on Parkinson’s disease using Classification Algorithms
In this paper the accuracy of two machine learning algorithms including SVM and Bayesian Network are investigated as two important algorithms in diagnosis of Parkinson’s disease. We use Parkinson's disease data in the University of California, Irvine (UCI). In order to optimize the SVM algorithm, different kernel functions and C parameters have been used and our results show that SVM with C par...
متن کاملBayesian networks to answer challenging neuroscience questions
In this keynote lecture we will show how Bayesian networks can address important neuroscience problems. These problems include: (a) neuroanatomy issues, like modeling and simulation of dendritic trees and classifying neuron types based on morphological features; (b) neurodegenerative diseases, like predicting health-related quality of life in Parkinson's disease, classification of dementia stag...
متن کاملPredicting the Eq-5d from the Parkinson's Disease Questionnaire Pdq-8 Using Multi-dimensional Bayesian Network Classifiers
The impact of the Parkinson's disease and its treatment on the patients' health-related quality of life can be estimated either by means of generic measures such as the european quality of Life-5 Dimensions (EQ-5D) or speci ̄c measures such as the 8-item Parkinson's disease questionnaire (PDQ-8). In clinical studies, PDQ-8 could be used in detriment of EQ-5D due to the lack of resources, time or...
متن کاملMarkov blanket-based approach for learning multi-dimensional Bayesian network classifiers: An application to predict the European Quality of Life-5 Dimensions (EQ-5D) from the 39-item Parkinson's Disease Questionnaire (PDQ-39)
Multi-dimensional Bayesian network classifiers (MBCs) are probabilistic graphical models recently proposed to deal with multi-dimensional classification problems, where each instance in the data set has to be assigned to more than one class variable. In this paper, we propose a Markov blanket-based approach for learning MBCs from data. Basically, it consists of determining the Markov blanket ar...
متن کاملMarkov blanket-based approach for learning multi-dimensional Bayesian network classifiers: An application to predict the European Quality of Life-5 Dimensions (EQ-5D) from the 39-item Parkinsonâ€TMs Disease Questionnaire (PDQ-39)
Multi-dimensional Bayesian network classifiers (MBCs) are probabilistic graphical models recently proposed to deal with multi-dimensional classification problems, where each instance in the data set has to be assigned to more than one class variable. In this paper, we propose a Markov blanket-based approach for learning MBCs from data. Basically, it consists of determining the Markov blanket ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Psychiatry research
دوره 213 2 شماره
صفحات -
تاریخ انتشار 2013